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Abstract
Starting with the lattice design specified in [Garren and Berg, MAP-doc-4307, 2011], we refine parameters to get precise dispersion
suppression in the straight sections and eliminate beta beating in the arcs. We then compute ramped magnet fields over the entire
momentum range of 375 GeV/c to 750 GeV/c, and fit them to a polynomial in the momentum. We compute the time of flight and
frequency slip factor over the entire momentum range, and discuss the consequences for longitudinal dynamics.

Our goal is to find the magnet fields as a function of momen-
tum for the lattice described in [1]. We will use these fields to
compute the time of flight and frequency slip factor as a function
of momentum.

Some precision in our definitions is helpful at this point. All
of the magnets will have a field which is a function of time dur-
ing the acceleration cycle. If we take a snapshot of the magnet
fields at a given time and treat them as fixed, then at that time
there is a closed orbit which depends on momentum (we are as-
suming no RF for the purposes of this discussion). Each time
has a design momentum, which is monotonically increasing
with time, and thus there is a natural mapping from the design
momentum to time. We will thus speak of magnet fields and lat-
tice properties as a function of momentum, when we are really
speaking of magnet fields at a given time, and lattice properties
at a given time at the design momentum for that time, assuming
the magnet fields are fixed at their values at that time.

Furthermore, there are properties such as the dispersion and
frequency slip factor which are related to derivatives of lattice
properties with respect to momentum. These properties depend
on time and therefore, via the mapping described int he pre-
vious paragraph, on momentum. In defining these quantities,
however, we fix the magnet fields at the given values based on
the designmomentum, find the lattice properties as a function of
momentum (again, assuming the fields are fixed), and evaluate
the derivative with respect to momentum at the design momen-
tum. Thus, in particular, there is not a direct relationship (via
differentiation) between the position as a function of the design
momentum and the dispersion (as there would be in a cyclotron,
for instance).
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In this calculation, we maintain the following properties for
each design momentum:

• The closed orbit position and transverse momentum is
zero in the straight section.

• The dispersion (in position and transverse momentum) is
zero in the straight section.

• The phase advance in each arc cell is 90° in both planes.

• The beta functions at corresponding points at the end and
center of each arc cell (i.e., halfway between each pair of
identical quadrupoles, plus at the corresponding position
at the ends of the arcs) are identical. In other words, the
lattice functions int he arc are identical whether they are
calculated for a single arc cell as a period or for the full
superperiod. This will simplify nonlinearity cancellation
for the chromatic correction sextupoles.

• Each matching cell, treated as if it were a period, has a
phase advance of 90° in both planes.

• The tune of the entire superperiod is 3.25 in both planes.

To accomplish this, we follow a sequence of steps:
1. At every momentum, the arc cell is tuned to have a phase

advance of 90° in both planes, and to steer the beam
through the centers of the quadrupoles.

2. At the central momentum, in the matching section, the
drift length between magnets (other than identical quad-
rupoles; 0.26322 m in [1]) is adjusted such that with both
matching cells identical, starting with the lattice functions
at the arc end, the beam is steered through the quadrupole
centers, dispersion is zero at the straight section, and the
phase advance through the dispersion section is 180°.

3. The quadrupoles and dipoles in the matching section are
adjusted so that each matching cell, treated as a periodic
cell, has a phase advance of 90°, and the closed orbit and
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Table 1: Cell layout for a half arc cell. Dipoles are rectangular bends. Length
parameters are defined in Table 2. Fields as a function of momentum are given
in Table 6.

Type Length Field
Drift L0A
Quadrupole (F) LQA B1FA
Drift L1A
Dipole (Cold) LCA 8 T
Drift L1A
Dipole (Warm) LWA B0A
Dipole (Warm) LWA B0A
Drift L1A
Dipole (Cold) LCA 8 T
Drift L1A
Dipole (Cold) LCA 8 T
Drift L1A
Dipole (Warm) LWA B0A
Dipole (Warm) LWA B0A
Drift L1A
Dipole (Cold) LCA 8 T
Drift L1A
Quadrupole (D) LQA B1DA
Drift L0A

Table 2: Length parameters for an arc cell. LCA is more precisely com-
puted as 2 sin(3𝜋/1664)𝑝/𝐵, where 𝐵 is 8 T, and 𝑝 is the central momentum
of 562.5 GeV/c.

Name Length (m)
L0A 0.29002
L1A 0.35
LQA 1.60
LWA 3.97319
LCA ≈2.65679

dispersion (both in position and transverse momentum)
are zero at the straight section. Each matching cell is in-
dividually reflection symmetric.

4. The quadrupoles in the straight section are adjusted to
match to the beta functions propagated from the arc
through thematching section, and to have a phase advance
of 270° for the entire straight. In fact, one should be able
to adjust this phase advance over a wide range of values
to set the ring tune to a desired value.

The resulting lattice cells are given in Tables 1–5.
We compute the magnet fields at 128 momenta, and perform

a least squares fit of the fields to a fifth order polynomial. Table 6
gives the resulting coefficients, and field values at the minimum
and maximum momenta. As can be seen, the fields are linear to
significantly better than 1%.

Figure 1 shows the aperture required for the beam. The
transverse emittance only makes a small contribution to this;
it is dominated by the dispersion size and closed orbit varia-
tion with momentum. Shorter lattice cells (for a given phase
advance per cell) would reduce both the closed orbit variation
and the dispersion size. The closed orbit variation could also

Table 3: Cell layout for a half matching cell. Dipoles are rectangular bends.
Length parameters are defined in Table 4. Each cell is individually symmetric
about the end of this table. Fields as a function of momentum are given in
Table 6.

Type Length Field
Drift L0M
Quadrupole (F) LQM B1FM
Drift L1M
Dipole (Cold) LCM 8 T
Drift L1M
Dipole (Warm) LWM B0FM
Dipole (Warm) LWM B0FM
Drift L1M
Dipole (Cold) LCM 8 T
Drift L1M
Dipole (Cold) LCM 8 T
Drift L1M
Dipole (Warm) LWM B0DM
Dipole (Warm) LWM B0DM
Drift L1M
Dipole (Cold) LCM 8 T
Drift L1M
Quadrupole (D) LQM B1DM
Drift L0M

Table 4: Length parameters for a matching cell. LCM is 2 sin(𝜋/832)𝑝/𝐵, simi-
larly to LCA in Table 2.

Name Length
L0M 0.38665 m
L1M ≈0.27774 m
LQM 4/3 LQA
LWM 2/3 LWA
LCM ≈1.77120 m

Table 5: Cell layout for half the straight. The full straight is reflection symmetric
about the end of the table. LS is 28.96996 m. Fields are given in Table 6.

Type Length Field
Drift L0A
Quadrupole (F) LQA QFS1
Drift LS
Quadrupole (D) LQA QDS1
Drift 2·L0A
Quadrupole (D) LQA QDS1
Drift LS
Quadrupole (F) LQA QFS2
Drift 2·L0A
Quadrupole (F) LQA QFS2
Drift LS
Quadrupole (D) LQA QDS2
Drift L0A
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Table 6: Fields as a function of momentum. Values are given at 375 GeV/c (𝑝min) and 750 GeV/c (𝑝max). Then coefficients of a polynomial in 𝑥 = (2𝑝 − 𝑝min −
𝑝max)/(𝑝max − 𝑝min) are given, where 𝑏𝑘 is the coeffient of 𝑥𝑘.

Field At 𝑝min At 𝑝max 𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5
B1DA (T/m) -17.4375 -35.1616 -26.3242 -8.8538 0.0217 -0.0072 0.0029 -0.0010
B1FA (T/m) 17.5933 35.2411 26.4219 8.8223 -0.0042 0.0014 -0.0006 0.0002
B0A (T) -1.78320 1.78316 0.00000 1.78317 -0.00002 0.00001 0.00000 0.00000
B1DM (T/m) -18.1112 -36.3683 -27.2522 -9.1244 0.0110 -0.0037 0.0014 -0.0005
B1FM (T/m) 18.1896 36.4082 27.3014 9.1085 -0.0022 0.0007 -0.0003 0.0001
B0DM (T) -1.74504 1.76172 0.00000 1.75621 0.00731 -0.00247 0.00102 -0.00036
B0FM (T) -1.81358 1.80024 0.00000 1.80464 -0.00585 0.00198 -0.00082 0.00029
B1DS1 (T/m) -17.6246 -35.2567 -26.4414 -8.8158 0.0006 -0.0002 0.0001 0.0000
B1FS1 (T/m) 18.0305 35.6230 26.8097 8.7969 0.0173 -0.0006 -0.0002 0.0000
B1DS2 (T/m) -17.6389 -35.2613 -26.4484 -8.8118 -0.0014 0.0005 -0.0002 0.0001
B1FS2 (T/m) 17.4294 35.0759 26.2610 8.8231 -0.0085 0.0002 0.0001 0.0000
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Figure 1: Aperture required for beam in arcs. Blue is for 375 GeV/c, green is for
562.5 GeV/c, and red is for 750 GeV/c. Solid lines are the closed orbits, shaded
region is what is required for the beam including the nonzero transverse emit-
tance and energy spread. We assume a 750MeV energy spread and a normalized
transverse emittance of 25 µm. Shaded regions are for 3σ, and are calculated
using a linear approximation.
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Figure 2: Vertical beam size (3σ) at 375 GeV/c in arcs, calculated using a linear
approximation.
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Figure 3: Time of flight per superperiod, relative to the time of flight at the
central momentum.

be reduced by using more dipoles per cell. Figure 2 shows the
vertical beam size, which is clearly very small.

The time of flight as a function of momentum in this lat-
tice is shown in Fig. 3. The frequency slip factor is 0.00241,
and has variation with momentum in the fourth significant digit.
In this scenario, the longitudinal dynamics will be governed by
the usual longitudinal Hamiltonian for a synchrotron, except the
RF phase will vary with time due to the variation of time of
flight with momentum (we assume the use of superconducting
RF which would not allow a variation of the RF frequency to
compensate this variation in time of flight). One could consider
reference paritcle motion as for serpentine acceleration in a lin-
ear non-scaling FFAG [2]. Only the reference particle would
follow the dynamics in [2]; the distribution would be governed
by the Hamiltonian for a synchrotron, except that the RF phase
varies with time. With sufficient RF voltage (more voltage being
needed for higher frequency RF), one could ensure that motion
near the reference paritcle is always stable. However, the bucket
area would be constantly changing as well, so one would need to
maintain a minimum phase (which will also depend on the cur-
rent particle momentum) to maintain sufficient RF bucket area.
The time of flight range is dominated by the variation in path
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Figure 4: Synchrotron tune for the full ring as a function of momentum. φ is
the RF phase off crest.

length, not the variation in particle velocity. The time of flight
range would thus be reduced if there was a smaller closed or-
bit position variation with energy, which would occur if there
were shorter cells or more dipoles (alternating between warm
and cold) per cell.

For this and subsequent discussions, we assume 1.3 GHz of
RF, and acceleration in 24 turns. We would need significantly
fewer turns or a much lower RF frequency to use the serpentine
reference particle motion described in the previous paragraph.
Thus in practice we will need to significantly reduce the time of
flight variation with momentum (by reducing the dispersion) or
introduce a scheme for correcting the reference paritle time of
flight. For subsequent discussions we will ignore this issue.

Assuming a fixed RF phase, we can compute the bucket
width as a function of RF phase. The energy width is a min-
imum at the lowest momentum. The longitudinal beam emit-
tance is 0.25 eV s [3]. If the bucket width is at 4σ, then the
required RF phase is 45° off crest. One could run at a phase
closer to crest if the momentum compatction were lower, or if
there were fewer turns. A lower momentum compaction would
require a shorter cells (and therefore more cells in the ring).

Figure 4 gives the synchrotron tune as a function of mo-
mentum, which will depend on the RF phase angle. A high
synchrotron tune is helpful for stabilizing some collective in-
stabilities. Assuming that we run at the minimum phase angle
of 45°, this is not high enough to make the 8 RF stations in the
ring necessary; 6 would be sufficient. If we wished to increase
the synchrotron tune, we would need to increase the momen-
tum compaction and therefore the dispersion, which is the op-
posite direction that is desirable for reducing the beam aperture,
increasing the RF bucket area, and reducing the time of flight
variation with momentum.

Most indications would push us toward a design with shorter
cells with a similar phase advance. This would reduce the beam
aperture, allow acceleration with a synchronous RF phase closer
to crest, and reduce the variation in the time of flight with mo-
mentum. The only down side of this is the reduction in the syn-
chrotron tune, which could impact our ability to counteract col-

lective effects. Increasing the number of bending magnets per
cell will reduce the required beam aperture and the time of flight
variation, and the only real penalty for doing so would be an in-
crease in wasted space for inter-magnet spacing.

For the design as it currently exists, 8 superperiods is not
necessary; there is no reason not to go to 6. One would want
to keep a similar cell length, since doing otherwise would move
the synchronous phase further off crest and increase the beam
aperture, the former likely being the most critical problem.
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